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The purpose of this work is to investigate existing recipes for LDA+U calculations from the
point of view of (i) their “first-principles”justification, (ii) their practical usefulness, and (iii) their
effect on magnetic properties. We concentrate on the relatively new area of applying LDA+U
to moderately-correlated, metallic systems. Our analysis of the Stoner instabilty for two most
commonly used LDA+U functionals shows that neither of them correctly describes the essential
physics of the correlated metals such as FeAl: (i) reducing the band dispersion by dressing of the
one-particle excitation, and (ii) spin fluctuations near the quantum critical point. We show that the
paramagnetism of FeAl is due to the spin fluctuations and cannot be explained within the LDA+U.
A new form of the LDA+U functional is proposed.

PACS numbers: 71.15.-m, 71.15.Mb, 71.20.Be, 71.20.Eh, 75.10.Lp

One of the most influential, from practical point of
view, developments in the Density Functional Theory
(DFT) in the last two decades was the LDA+U method
(see, e.g., Ref. [1]). This method includes the orbital
dependence of the self-energy operators, missing from
the Kohn-Sham potential, in a relatively crude, pseudo-
atomic way, neglecting the fine details of the spatial vari-
ations of the Coulomb potential. On the contrary, the
standard Local Density Approximation, LDA accounts
for the spatial variation of the Hartree potential exceed-
ingly well, but neglects the orbital dependence of the
Coulomb interaction.

There is one inherent ambiguity in the LDA+U
method: In LDA, all electron-electron interactions have
already been taken into account in a mean field way. The
Hubbard Hamiltonian, which represents the underlying
physics of the LDA+U method, also incorporates a large
part of the total Coulomb energy of the system. Simple
combination of the LDA and Hubbard Hamiltonian thus
leads to a double counting (DC) of the Coulomb energy,
so one needs to identify those parts of the DFT expression
for the total energy that correspond to the interaction in-
cluded in the Hubbard Hamiltonian and subtract them.
However, since the DFT Hamiltonian is written in terms
of the total density, and the Hubbard Hamiltonian in the
orbital representation, it appears impossible to built a
direct link between the two. Second, even if it were pos-
sible, that would be undesirable. Spatial variation of the
Hartree potential (and, to a lesser extent, the exchange-
correlation potential) is very important. It would be un-
reasonable to subtract that out just because it is already
taken into account in a primitive way (roughly speak-
ing, UN 2/2). Rather, one wants to identify the mean-
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field part of the Hubbard Hamiltonian, and subtract that,
leaving only the correction to the LDA-type mean field
solution.

This is not a uniquely defined procedure. Several
recipes exist, and it has been appreciated lately [2] that
the results of LDA+U calculations may depend crucially
on the choice of the DC recipe. It should be noticed that
while in case of strongly correlated systems the LDA+U
ideology is at least practically established, there is a
relatively new area of applying LDA+U to moderately-
correlated, metallic systems [2, 3, 4], where the situation
is very far from clear.

In this Letter we will discuss the effect of different DC
prescription on the LDA+U results in correlated met-
als. Our goal is to find out which problems associated
with this class of materials can, in principle, be solved
within LDA+U, and which cannot. We will also present
a systematic approach to the DC problem, of which the
existing recipes are special cases.

We shall use for our analysis the spherically averaged
form of the rotationally-invariant LDA+U [5], due to Du-
darev et al. [6]:
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Tr(ρσ · ρσ)(1)

∆V 0
LDA+U (mσ) = ŪN − J̄Nσ − (Ū − J̄)nmσ (2)

Here Ū and J̄ are spherically averaged Hubbard repulsion
and intraatomic exchange for electrons with the given an-
gular momentum (usually, l = 2 or 3), nmσ is the occupa-
tion number of the m-th orbital, σ = ±1 is the spin index,
and the superscript 0 means that the double counting
terms have not been subtracted yet. The orbital occu-

pation matrix matrix ρσmm′ = −π−1Im
∫ EF Gmm′ (E)dE,

where Gmm′ the one-electron Green’s function; Nσ =



2

Tr(ρσ) and N =
∑
σ Nσ.

Now we need to subtract from Eq. (1) the DC term,
starting with the Hartree part of the Hubbard energy
EHartreeLDA+U = ŪN2/2. The second term in Eq. (1) is also
an explicit functional of the spin density only, and is also
likely to be better described by LDA, so one can subtract
it as well. What part of the remaining last term of the
Eq. (1) is also included in LDA? Czyżyk and Sawatzky
[7] suggested applying the LDA directly to this term, by

assuming the uniform occupancy, ρσ,LDAmm′ = δmm′nσ, and
writing down the corresponding DC term as

ED.C. =
1

2
(Ū − J̄)(2l + 1)

∑

σ

n2
σ , (3)

where nσ = Nσ/(2l + 1). Eq. (3) leads to the following
corrections to the total electronic energy and the effective
potential:

∆EAMF
LDA+U = − Ū − J̄

2

∑

σ

(
Tr (ρσ · ρσ) − (2l + 1)n2

σ

)
(4)

∆V AMF
LDA+U (mm′σ) = −(Ū − J̄ ) (ρσmm′ − nσ) .(5)

Here AMF stands for “Around Mean Field” [7].
For strongly correlated systems the limit of the uniform

occupancy is not correct (in fact, it is not correct even
in weakly correlated system due to the crystal field; it
is easy to show that AMF therefore leads to an artificial
enhancement of the crystal field splitting). Thus, it not
surprising that for strongly localized electrons the AMF
functional behaves pathologically. Consider, for example,
Gd metal, with 7 occupied spin-up and 7 empty spin-
down orbitals. The potential (5) has zero effect, as in
this case nmσ = nσ. In reality, of course, the spin-up and
spin-down bands form the lower and the upper Hubbard
bands, respectively, and should be separated by a gap of
the order of U . This observation led [7, 8] to another
functional,

∆EFLLLDA+U = − Ū − J̄
2

∑

σ

(Tr(ρσ · ρσ)− (2l + 1)nσ) (6)

∆V FLLLDA+U (mm′σ) = −(Ū − J̄)

(
ρσmm′ −

1

2

)
, (7)

which produces the correct limiting behavior in the
strongly localized, limit, where ρσ · ρσ = ρσ , and FLL
stands for “Fully Localized Limit”. This functional can
be obtained from the Eq. (1) by subtracting the followng
DC term:

1

2
ŪN (N − 1)− 1

2
J̄
∑

σ

Nσ(Nσ − 1), (8)

which is the Hartree energy without the self-interaction,
and the Stoner energy without the self-exchange. Most of
the modern LDA+U calculations utilize one of these two
functionals, although the real materials the occupation
numbers lie between these two limiting cases.

Before analyzing further the behavior of the LDA+U
functionals, let us briefly discuss what kind of corrections,
qualitatively, we expect in a weakly-correlated metal (as
opposed to an uncorrelated metal, on one hand, and a
strongly-correlated insulator, on the other hand). We
start from the Dyson’s equation,

∫
dr′[Ĥ0 + Σ(r, r′, εkα)]ψkα(r′) = εkαψkα(r), (9)

where εkα and ψkα are the energies and the amplitudes of
the poles of the one-particle Green’s function. The Kohn-
Sham DFT approximates the self-energy operator Σ by
the local, energy-independent potential, Σ(r, r′, ω) ≈
VKS(r)δ(r− r′). In the lowest order in the screened inter-
action (the “GW” approximation), the correction to this
appears to be a combination of two terms coming from
the pole in the Green’s function (“dynamically screened
exchange”) and the pole in the frequency-dependent in-
teraction (”Coulomb hole”). The principal physics of this
correction are thus the nonlocal and the dynamic (“fluc-
tuational”) effects.

The LDA+U approach also corrects the Kohn-Sham
equations, but in a different way: in addition to the lo-
cal potential VKS(r)) a non-local operator is introduced
which projects the state ψkα onto a set of mσ local or-
bitals. The goal is to remove or reduce orbital degeneracy
at the Fermi level, in spirit of the unrestricted Hartree-
Fock theory [9], rather than to account for fluctuations.
The physics that is missing from the LDA+U and LDA
equations can be described as exchange of virtual elec-
tronic excitations (cf. Fig. 1), roughly speaking, plas-
mons or (para)magnons. This leads to “dressing” of the
one-particle excitations in the same way as the electron-
phonon coupling “dresses” electrons near the Fermi sur-
face, although in a correlated metal such mass renor-
malization effects occur on a large energy scale (of the
order of U or J). LDA calculations cannot reproduce
such a dressing, which has been observed in many dif-
ferent ways experimentally. To give examples, LDA cal-
culations do not explain large mass renormalizations in
Sr2RuO4 [10], and large specific heat renormalization in
many correlated metals, produce too large plasma fre-
quencies, e.g., in YBa2Cu3O7, yield an optical absorp-
tion spectrum in CrO2 shifted by about 20% to higher
frequency, as compared with experiment [11], and overes-
timate the exchange splitting in Ni by a factor of 2 [12].
In all these cases the total width of the d-bands is de-
creased, as opposed to broadening inherent to LDA+U.
Here the essential physics is missing from the LDA+U as
well as in LDA, while the spatial variation of the mean-
field Coulomb interaction is treated better by the LDA.
The missing physics is associated, to a large degree, with
dynamic fluctuations. Indeed, the dynamic version of
the LDA+U method, the Dynamic Mean Field Theory
(DMFT) [13] resolves many of these problems.

For instance, the de Haas-van Alphen mass renormal-
ization in Sr2RuO4 is 3-4 [10], far greater than possible
renormalization due to the phonons. Eliashberg-type cal-
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FIG. 1: Examples of the self-energy diagrams including ex-
change of virtual longitudinal (a) and transverse (b) param-
agnons.

FIG. 2: Band structure of Sr2RuO4 in LDA (dots in the
left panel, solid line in the right panel) and in two flavors
of LDA+U (right), and in the DMFT (left) [15].

culations [14] of the renormalization due to spin fluctu-
ations, using a spectrum deduced from the LDA band
structure, give mass renormalizations of the right order.
Alternatively, when DMFT was applied to Sr2RuO4, it
was shown that the dynamic effects near the Fermi level
narrow the bands and increase their mass, in agreement
with the experiment [15]. On the other hand, neither fla-
vor of LDA+U has any interesting effect on these states
(Fig. 2).

Another common problem is due to a quantum crit-
ical point, that is, to a magnetic instability at zero
temperature. Fluctuations become increasingly impor-
tant near such a point, effectively reducing tendency to
magnetism. Examples include FeAl (MLDA ≈ 0.6 µB ,
Mexp = 0), Sr3Ru2O7 (MLDA ≈ 0.8 µB, Mexp = 0),
ZrZn2 (MLDA ≈ 0.7 µB, Mexp = 0.2 µB), and other.
LDA+U broadens the bands, and thus potentially re-
duces the tendency to magnetism. However, even when
this happens, it happens for the wrong reason.

A metal becomes unstable against a feromagnetic tran-
sition if its density of states at the Fermi level, DF is
larger than the so-called inverse Stoner parameter, 1/I,
where I is defined as I = ∂2Exc/∂M

2, the second deriva-
tive of the exchage-correlation energy with respect to the

total magnetic moment. In this language, the spin fluctu-
ations near the quantum critical point effectively reduce
I. This reduction overcomes some increase in the density
of states.

In the LDA+U, the Stoner factor, DF I, changes, not
only because bands broaden and DF decreases, but also
because the newly added interaction energy depends on
M . To get a better insight, let us use Eqs. (5, 7) when a
metallic system is at the onset of the ferromagnetic phase
transition. The force theorem, applied to the functionals
in Eqs. (5) and (7), calls for a changes in ρσmm′ , namely
δρσmm′ = bσDmm′ , assuming a rigid shift of the bands by
±b = ±M/2DF , and a density of states (DOS) matrix
Dmm′ = −π−1Im Gmm′ (EF ). This generates a change
in the interaction energy, which results in an additional
contribution to the Stoner parameter,

∆IAMF = (U − J)
(
Tr(D ·D) − (TrD)2/(2l + 1)

)
/D2

F

∆IFLL = (U − J)Tr (D ·D) /D2
F . (10)

In the limit of the uniform occupancy the latter ex-
pression reduces to (U−J)/(2l+1). Given that the LDA
Stoner parameter, I, is of the same order as J, we obtain
for the total Stoner parameter IFLL ≈ (U+2lJ)/(2l+1),
which the well known expression for the Stoner factor in
the Hubbard model. On the contrary, ∆IAMF in this
limit is zero. In real metals Dmm′ is more complicated
due to crystal field effects. Let us consider, for illustra-
tion, d-electrons in a cubic environment, and introduce
the difference ∆D = Deg − Dt2g, where Deg and Dt2g
are eg and t2g DOS per one orbital at EF , as a measure
of the crystal field. This gives rise to a contribution to
∆IAMF = 5

24(U − J)(∆D/DF )2. In some cases this con-
tribution is not large enough to overcome a decrease in
DF , so that LDA+U may stailize the paramagnetic state,
as, for instance, observed for a very narrow range of unre-
alistically large U ’s for FeAl by Mohn et al. [2] (of course,
only in the AMF functional; the FLL functional produces
a large ∆I ≈ (U − J)/5, always increasing the tendency
to magnetism). In reality, the ferromagnetic instability
near a quantum critical point is suppressed by the fluc-
tuations, and not due to an artificial enhancement of the
crystal field (cf., also, Ref. [16]). Indeed, using DMFT,
(which accounts for dynamic spin fluctuations [17]) with
a realistic U = 2 eV, we found the paramgnetic state to
be perfectly stable, while the density of states was not
reduced at all (Fig. 3).

These examples can be contrasted, say, with the d-
bands in Cu metal. Despite the fact that Cu is a good
metal, the d-bands in Cu are well localized and LDA+U
is appropriate. Indeed, the LDA d-bands are 0.5 eV too
high in Cu, while the FLL LDA+U d-bands are in excel-
lent agreement with the experiment (Fig. 4) .

We conclude that neither of the two available LDA+U
functionals correctly describes the essential physics of
the correlated metals: (i) reducing the band dispersion
by dressing of the one-particle excitation, and (ii) spin
fluctuations near the quantum critical point. One func-



4

-4 -2 0 2 4
E - E

F
 (eV)

3

2

1

0

1

2

3

D
en

si
ty

 o
f 

St
at

es
 (

eV
-1

f.
u.

-1
)

FIG. 3: FeAl density of states, D(E), in DMFT (solid line)
compared with the nonmagnetic LDA. The DMFT solution
is stable, the LDA is not (a ferromagnetic solution is stable),
despite the same D(EF ).
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FIG. 4: Cu band structure in LDA and in two flavors of
LDA+U. The experiment is from Ref. [18]

tional, labeled FLL here, correctly describes the impor-
tant physics in the limit of well localized electrons (usu-
ally in insulators, but cf. the example of the Cu metal
above), and can be recommended in this case. The other
functional, labeled AMF, is exact in a hypotetical mate-
rial with the uniform electron occupancies. Neither func-
tional accounts for the fluctuation effects, but even in the
static limit, the question arises, which functional is bet-
ter in an intermediate, not-fully-localized limit? Below
we suggest a recipe that accounts for an incomplete lo-

calization and reduces to AMF or FLL in the appropriate
limits.

To determine the appropriate DC term, we need a
mean field approximation to the last term in Eq. (1),
(Ū − J̄)nmσ . This can be written as (Ū − J̄)xσ, where x
is some function of nσ. The AMF corresponds to xσ = nσ,
while in the FLL xσ = 1/2. Note that in the AMF the
LDA+U potential, Eq. (5), averaged over all occupied
states, is zero. This is a possible way to define a mean
field (cf. the Slater approximation to the Fock potential),
but not the way used in the DFT. The latter is a mean
field theory that produces correct total energy, not the
correct average potential. Thus AMF and FLL represent
the “DFT” mean field if all occupation numbers are all
the same, or are all 0 or 1, respectively. It is easy to show
that (2l+ 1)n2

σ ≤ Tr (ρσ · ρσ) ≤ (2l+ 1)nσ, so that AMF
always gives a negative, and FLL a positive correction
to the total energy, while the right (in the DFT sense)
DC subtraction should give zero correction to the total
energy. Thus the “DFT” xσ = ασnσ+(1−ασ)(1/2), and

∆EDFTLDA+U = − Ū − J̄
2

∑

σ

[Tr(ρσ · ρσ)

− (2l + 1)
[
ασn

2
σ + (1− ασ)nσ

]
]

∆V DFTLDA+U (mm′σ) = −(Ū − J̄)[ρσmm′ − ασnσ −
1− ασ

2
].

Here

0 ≤ ασ =
Tr(δρσ · δρσ)

(2l + 1)nσ(1− nσ)
≤ 1. (11)

We emphasize that ασ is not an adjustable parameter,
and not a formal functional of the charge density, but a
system-dependent constant, defined by the self-consistent
occupation matrix and δρσmm′ = ρσmm′ − nσ. In practical
calculations it needs to be recomputed at each iteration,
as the current value of ρσmm′ changes. Note that the total
energy is given by the regular LDA expression that only
implicitly depends on Ū and J̄ via the changing density
distribution; it is variational with respect to the charge
density at the fixed ασ, but not variational with respect
to ασ themselves.
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Czyżyk, and G. A. Sawatzky, Phys. Rev. B 48, 16929
(1993).

[9] V. Bach, E. H. Lieb, M. Loss, and J. P. Solovej, Phys.
Rev. Lett. 72, 2981 (1994).

[10] A. P. Mackenzie et al., Phys. Rev. Lett 78, 2271 (1997).
[11] I. I. Mazin, D. J. Singh, and C. Ambrosch-Draxl, Phys.

Rev. B 59, 411 (1999).
[12] D. E. Eastman, F. J. Himpsel, and J. A. Knapp, Phys.

Rev. Lett. 40, 1514 (1978).
[13] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,

Rev. Mod. Phys. 68, 13 (1996), and refs therein.

[14] I. I. Mazin and D. J. Singh, Phys. Rev. Lett. 79, 733
(1997).

[15] A. Liebsch and A. I. Lichtenstein, Phys. Rev. Lett. 84,
1591 (2000).

[16] D. A. Papaconstantopoulos and C. S. Hellberg, to be
published in Phys. Rev. Lett. (2002).

[17] M. I. Katsnelson and A. I. Lichtenstein, J. Phys. - Cond.
Mat. 11, 1037 (1999).

[18] P. Thiry et al., Phys. Rev. Lett. 43, 82 (1979).


